Search results for "unilateral contact"
showing 6 items of 6 documents
BIEM-based variational principles for elastoplasticity with unilateral contact boundary conditions
1998
The structural step problem for elastic-plastic internal-variable materials is addressed in the presence of frictionless unilateral contact conditions. Basing on the BIEM (boundary integral equation method) and making use of deformation-theory plasticity (through the backward-difference method of computational plasticity), two variational principles are shown to characterize the solution to the step problem: one is a stationarity principle having as unknowns all the problem variables, the other is a saddle-point principle having as unknowns the increments of the boundary tractions and displacements, along with the plastic strain increments in the domain. The discretization by boundary and i…
Residual a posteriori error estimation for frictional contact with Nitsche method
2023
We consider frictional contact problems in small strain elasticity discretized with finite elements and Nitsche method. Both bilateral and unilateral contact problems are taken into account, as well as both Tresca and Coulomb models for the friction. We derive residual a posteriori error estimates for each friction model, following [Chouly et al, IMA J. Numer. Anal. (38) 2018, pp. 921-954]. For the incomplete variant of Nitsche, we prove an upper bound for the dual norm of the residual, for Tresca and Coulomb friction, without any extra regularity and without a saturation assumption. Numerical experiments allow to assess the accuracy of the estimates and their interest for adaptive meshing …
Nonsmooth Mechanics. Convex and Nonconvex Problems
1999
Nonlinear, multivalued and possibly nonmonotone relations arise in several areas of mechanics. A multivalued or complete relation is a relation with complete vertical branches. Boundary laws of this kind connect boundary (or interface) quantities. A contact relation or a locking mechanism between boundary displacements and boundary tractions in elasticity is a representative example. Material constitutive relations with complete branches connect stress and strain tensors, or, in simplified theories, equivalent stress and strain quantities. A locking material or a perfectly plastic one is represented by such a relation. The question of nonmonotonicity is more complicated. One aspect concerns…
Sensitivity analysis for discretized unilateral plane elasticity problem
1992
Abstract Numerical realization of optimal shape design problems requires gradient information which is used in minimization procedures. There are several possibilities for obtaining this information. Here we present a method, based on the use of the material derivative approach, applied to the finite element discretization of the problem. The advantage of this approach is that is gives the exact values of gradient and it can be very easily implemented on computers. We apply this method in the case of contact problems, where the situation is more involved compared with the case of elasticity problems with classical boundary conditions. We concentrate on a special choice of the cost functiona…
The symmetric boundary element method for unilateral contact problems
2008
Abstract On the basis of the boundary integral equation method, in its symmetric formulation, the frictionless unilateral contact between two elastic bodies has been studied. A boundary discretization by boundary elements leads to an algebraic formulation in the form of a linear complementarity problem. In this paper the process of contact or detachment is obtained through a step by step analysis by using generalized (weighted) quantities as the check elements: the detachment or the contact phenomenon may happen when the weighted traction or the weighted displacement is greater than the weighted cohesion or weighted minimum reference gap, respectively. The applications are performed by usin…
Shakedown of elastic—plastic solids with frictionless unilateral contact boundary conditions
1997
Abstract Elastic perfectly plastic solids (or structures) in frictionless unilateral contact with a rigid obstacle and subjected to quasi-statically variable loads within a given domain are considered. In the hypothesis that the structure undergoes small displacements and complies with a d -stability requisite herein introduced, a Melantype shakedown theorem is presented. This theorem is conceptually similar to the classical one; namely, it requires that the unilateral-contact elastic stress response to the loads and to some initial plastic strains be plastically admissible everywhere in the body and for all load conditions. A method for evaluating the shakedown load boundary is also discus…